A Novel Nanoprobe for Multimodal Imaging Is Effectively Incorporated into Human Melanoma Metastatic Cell Lines
نویسندگان
چکیده
To facilitate efficient drug delivery to tumor tissue, several nanomaterials have been designed, with combined diagnostic and therapeutic properties. In this work, we carried out fundamental in vitro and in vivo experiments to assess the labeling efficacy of our novel theranostic nanoprobe, consisting of glycogen conjugated with a red fluorescent probe and gadolinium. Microscopy and resazurin viability assays were used to study cell labeling and cell viability in human metastatic melanoma cell lines. Fluorescence lifetime correlation spectroscopy (FLCS) was done to investigate nanoprobe stability. Magnetic resonance imaging (MRI) was performed to study T₁ relaxivity in vitro, and contrast enhancement in a subcutaneous in vivo tumor model. Efficient cell labeling was demonstrated, while cell viability, cell migration, and cell growth was not affected. FLCS showed that the nanoprobe did not degrade in blood plasma. MRI demonstrated that down to 750 cells/μL of labeled cells in agar phantoms could be detected. In vivo MRI showed that contrast enhancement in tumors was comparable between Omniscan contrast agent and the nanoprobe. In conclusion, we demonstrate for the first time that a non-toxic glycogen-based nanoprobe may effectively visualize tumor cells and tissue, and, in future experiments, we will investigate its therapeutic potential by conjugating therapeutic compounds to the nanoprobe.
منابع مشابه
CYTOKINE AND GROWTH FACTOR MODULATION OF CELL CYCLE EVENTS IN HUMAN MELANOMA CELL LINES
Cytokines influence cell cycle events, which in some but not all instances can be associated with melanoma progression. Analysis of the G0/G 1 and S phase fractions of the cell cycle was used to assay the proliferative or inhibitory activity of cytokines against ten human melanoma cell lines, including pairs of cell lines derived from primary and metastatic tissue of individual patients. Cy...
متن کاملA Novel Biocompatible Nanoprobe Based on Lipoproteins for Breast Cancer Cell Imaging
Objective(s): Contrast-enhanced magnetic resonance imaging (MRI) of breast cancer provides valuable data on the disease state of patients. Biocompatible nanoprobes are expected to play a pivotal role in medical diagnosis in the future owing to their prominent advantages. The present study aimed to introduce a novel biocompatible nanoprobe based on lipoproteins for breast cancer cell imaging.<br...
متن کاملA 99mTc-tricine-HYNIC-labeled Peptide Targeting the Melanocortin-1 Receptor for Melanoma Imaging
Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target for the development of α-MSH peptide based imaging and therapeutic agents. In this work a new lactam bridge α-MSH analogue was synthesized and radiolabeled with 99mTc via HYNIC chelator and tricine as co-ligand. Also, stability in human serum, receptor bound internalization and tissue biodistribution in tumor bearing nude m...
متن کاملSUSCEPTIBILITY OF HUMAN WM MELANOMA CELL LINES TO NK AND LAK CYTOTOXICITY AND THEIR RELEVANCE TO THE LEVEL OF MHC CLASS I AND ICAM-l ANTIGEN EXPRESSION
The effect of natural killer (NK) cells and lymphokine activated killer ( LAK) cells was studied on a group of human melanoma cell lines. Peripheral blood from healthy volunteers was utilized as a fresh source of natural killer cells and rhI L-2 for producing LAK cells. The cytotoxicity of effector cells was quantified using a 4 hour SI determining the density of antigen expression on tumor...
متن کاملFe3O4@Ag Nanoprobe for Detection of Ovarian Cancer Cell Line Using Magnetic Resonance Imaging
Background and Aims: Magnetic resonance imaging (MRI) plays an essential role in molecular imaging by delivering the contrast agent into targeted cells. The aim of this study was to evaluate the use of magnetic nanoparticles containing iron oxide and silver (Fe3O4@Ag core-shell nanoprobe) as a contrast agent for the detection of ovarian cancer cell line ovcar-3. Materials and Methods: Co-preci...
متن کامل